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ABSTRACT 

. 

Buckling loads of thick-walled orthotropic and anisotropic simply 

supported circular cylinders are predicted using a higher-order transverse- 

shear deformation theory. 

conventional first-order transverse-shear deformation theory and the higher- 

order theory shows that the additional allowance for transverse shear 

deformation has a negligible effect on the predicted buckling loads of 

medium-thickness metallic isotropic cylinders. However, the higher-order 

theory predicts buckling loads which are significantly lower than those 

predicted by the first-order transverse-shear deformation theory for certain 

short, thick-walled cylinders which have low through-the-thickness shear 

moduli. 

buckling load of axially compressed cylinders indicates that laminates 

containing 45-degree plies are most sensitive to transverse-shear 

deformation effects. Interaction curves for buckling loads of cylinders 

subjected to axial compressive and external pressure loadings indicate that 

buckling loads due to external pressure loadings are as sensitive to 

transverse-shear deformation effects as buckling loads due to axial 

compressive loadings. The effects of anisotropy are important over a much 

wider range of cylinder geometries than the effects of transverse shear 

deformation. Neglecting either anisotropic effects or transverse-shear 

deformation effects leads to non-conservative errors in predicted buckling 

loads. 

A comparison of buckling loads predicted by the 

A parametric study of the effects of ply orientation on the 
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NOMENCLATURE 

geometric stiffness matricies of orthotropic cylinder for 

axial compressive loading and external presssure loadings, 

respectively (one axial mode shape) 

geometric stiffness matricies of anisotropic cylinder for [B1)A, LB21A 

[Cij 1 

'16 "26 

D 

D1l , D22 

D16 ' D26 

E 

Ell Et' EZ 

axial compressive and external pressure loadings, 

respectively (several axial mode shapes) 

orthotropic material stiffness matrix 

anisotropic material stiffnesses 

bending stiffness of isotropic wall 

bending stiffnesses of laminated shell 

anisotropic laminate stiffnesses 

Young's modulus of isotropic material 

Young's moduli of unidirectional zero-degree laminate in 

longitudinal, transverse and thickness directions, 

respectively 

block matrix of material stiffness matrix of anisotropic f(mi , mj 1 

G 

j 
cylinder which is dependent upon axial wave numbers m 

Shear modulus of isotropic material 

and m i 

Shear moduli of zero-degree laminate Glt SGlz , GtZ 

Shear moduli of laminated cylinder wall 

nondimensionalized buckling load of cylinder: k -N L2/Dn2 

Gxe ~ ~ x z ' ~ Z e  

X x x  
k 

for isotropic walls and k -N L 2 / ( J m  m 2 )  for laminated x x  11 22 
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walls 

X 
i; 

N 

nondimensionalized approximate buckling load of anisotropic 

cylinder 

stiffness matrix of orthotropic cylinder (one axial 

mode shape) 

stiffness matrix of orthotropic cylinder (several axial 

mode shapes) 

anisotropic terms of stiffness matrix [K] ANIS0 

stiffness matrix of anisotropic cylinder 

length of cylinder 

number of half-waves in axial direction and number of waves 

in circumferential direction of buckled cylinder 

number of terms summed in Fourier series for anisotropic 

analysis 

resultant normal forces at buckling 

external pressure loading 

radius of cylinder measured to wall centerline 

nondimensional parameter for describing isotropic cylinders: 

s-Dx2/GtL2 

wall thickness of cylinder 

cylinder displacements in axial, circumferential and radial 

directions, respectively (independent of x, z and 0 )  

cylinder displacements in axial, circumferential and radial 

directions, respectively (functions of x, z and 0 )  
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small changes in cylinder displacements which occur at 

buckling in the axial, circumferential and radial directions, 

respectively 

cylinder displacements in axial, circumferential and radial 

directions, respectively (includes prebuckling displacements 

and small changes which occur at buckling) 

cylinder axes in axial and radial directions 

vector of displacements 

nondimensional parameter: Z==L2,/-/Rt for isotropic 

walls and Z-L2]12(1-p p )/Rt for laminates 12 21 

components in stiffness matrix (see equations ( 8 ) )  

normal strains 

parameter which specifies if orthotropic terms are to 

be included or neglected ( A  = 1 or 0, respectively) 

Poisson's ratio of isotropic material 

Poisson's ratios of laminate 

virtual work 

eigenvalue of anisotropic problem 

measure of sensitivity to anisotropy: p - ( a 2 n / a x 2 ) / (  2 n ) 

shear strains 

axis in circumferential direction 

ply angle 

normal stresses 

V 



shear stresses xz 9 ‘Xe 9 ez 
7 

6 variation 

w 

Superscripts and subscripts 

eigenvalue of orthotropic buckling problem 

o,a,l constant, linear and trigonometric terms through the thickness 

O,,, O s , ,  differentiation with respect to x, 0 ,  z, respectively 

0 , z  

laminate in which the bracketted quantity is repeated n times 
[ Ins 

then made symmetric 

( I t  transpose of matrix { 1 
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CHAPTER I 

INTRODUCTION 

1.1 General 

Fiber reinforced composite materials have higher stiffness-to-weight 

and strength-to-weight ratios than metals so they provide a useful 

lightweight alternative to traditional materials in some structural 

components. Because of these higher specific strength and stiffness ratios, 

more efficient structural components can be built from composites than from 

metals for many aircraft applications. However, before composite materials 

can be used efficiently and safely, their limitations and failure modes must 

be understood. The limitations and weaknesses of composite structures are 

not always the same as those of metal ones. For example, transverse shear 

deformations have a more significant effect on the behavoir of laminated 

structures than on metal ones. This phenomenon can be more severe in 

structures made of composite materials than those made of homogeneous 

metallic materials because laminated composites are more flexible in the 

through-the-thickness direction. One structural response which is 

particularly sensitive to transverse-shear deformation effects is buckling. 

Current theories do not always adequately account for transverse-shear 

deformation effects in the buckling of thick-walled circular cylinders made 

of materials such as fiber reinforced composites. Not adequately accounting 

for transverse shearing may lead to non-conservative predictions of buckling 

loads. While current theories are accurate for most cylinders, few 

adequately account for the potential reduction in buckling load due to 
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transverse shear deformation when the cylinder has low radius-to-thickness 

(R/t) and length-to-radius (L/R) ratios. 

A literature survey indicates that the problem of accounting for 

transverse-shear deformation effects has not been fully explored in the case 

of buckling of thick-walled laminated circular cylinders. 

understanding of transverse-shear deformation effects on the buckling of 

orthotropic and anisotropic thick-walled cylinders is needed to utilize 

fully laminated composites in aircraft applications. 

A better 

1.2 Obiectives and ScoDe 

This report describes the results of an analytical study of the effects 

of transverse shear deformation and anisotropy on the buckling loads of 

circular cylinders subjected to either axial compression or a combination of 

axial compression and external pressure. Isotropic, symmetrically-laminated 

orthotropic and anisotropic circular cylinders are studied to determine 

which types of materials (e.g., isotropic metals, orthotropic and 

anisotropic graphite-epoxy composites), which stacking sequences (e.g., 

[()Ins, [9OIns, [k45/90]ns, [45Ins), and which cylinder geometries (e.g., 

thin-walled long cylinders, thick-walled short cylinders) are most sensitive 

to transverse shear deformation. 

anisotropic circular cylinders are studied to examine the effects of 

anisotropy on buckling loads. 

Mildly anisotropic and strongly 
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1.3 Brief Review of Pertinent Literature 

. 

Several me.thods of accounting for transverse-shear deformation effects 

have been suggested in the literature for isotropic beams and plates. 

Timoshenko originally suggested the use of shear correction factors in 

reference 1. The use of shear correction factors for isotropic beams is not 

easily extended to account for changes in material properties through-the- 

thickness or to include the effects of curvature. Stavsky and Friedland 

assume non-constant material properties through-the-thickness in reference 

2, but do not allow for a discontinuous distribution of the properties as is 

typical of laminated structures. Dong and Tso determine shear correction 

factors for orthotropic laminates in reference 3 .  In an attempt to avoid 

the use of shear correction factors, Levinson considers a plate theory with 

assumed cubic functions in the thickness direction in reference 4 ,  but uses 

a variationally inconsistent set of equilibrium equations. This set of 

equations does not account for all of the strain energy correctly. The 

problem of accounting for transverse shearing in plates is studied in 

references 5 and 6 without the use of shear correction factors or 

inconsistent equations. Low stiffnesses in the thickness direction are 

common in laminated structures. 

modulus and the shear modulus in the thickness direction for short, thick- 

walled cylinders is shown by Kaplan and Kan reference 7 .  

reduced substantially when these lower stiffnesses are taken into account. 

The effect of low values for the Young's 

Buckling loads are 

Extensive work has been done in the area of buckling of thin-walled 

cylinders made of isotropic and orthotropic materials (e.g., refs. 8-12). 

The buckling of thin-walled cylinders usually involves little transverse 
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shear deformation. As the wall thickness increases, or the radius-to- 

thickness ratio decreases, the effects of transverse shear deformation on 

the buckling load become more pronounced. The importance of transverse 

shearing in composite shells is discussed in reference 1 3  where Vasil'ev 

compares the significance of a variety of effects which are neglected in 

classical Kirchoff-Love theory. Classical theory assumes that all normals 

to the reference surface of the undeformed structure must remain normal to 

the reference surface of the deformed structure. Vasil'ev concludes that 

for stability problems "allowance for radius variation through the thickness 

and for shear strain appears to be the most significant issues." This 

transverse-shearing-strain issue is addressed for sandwich cylinders in 

reference 14 where Stein and Mayers derive simple expressions to predict 

buckling loads of sandwich cylinders under axial compression. 

indicates that for a cylinder with a radius-to-thickness ratio of 10, the 

buckling load of a thick-walled sandwich cylinder is decreased by 50 percent 

or more compared to results from classical Kirchoff-Love theory. This 

decrease is due to transverse-shear deformation effects. Orthotropic and 

anisotropic cylinders can be studied by using the computer code which is 

described in reference 15. No conclusions are drawn about the effects of 

transverse shear deformation on buckling loads in reference 15. 

This analysis 

One approach used to account for transverse-shear deformation effects 

more accurately is the use of more terms in the assumed displacement series 

than are used in classical Kirchoff-Love theory or in conventional Reissner- 

Mindlin first-order transverse-shear deformation theory. The inclusion of 

these additional terms results in a higher-order theory. 

included trigonometric terms in his assumed displacement series through-the- 

thickness for the displacements in the axial and circumferential directions 

In 1887 Levy 
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for the study of plates described in reference 16. 

Stein develops a theory for studying buckling of cylinders based on 

nonlinear strain-displacement relations in which each assumed displacement 

series includes trigonometric terms in the through-the-thickness direction. 

These additional terms allow for more transverse shear deformation than in 

the classical or the first-order transverse-shear deformation theories. 

This higher-order theory can be used to calculate buckling loads of 

laminated shells. 

In references 17 and 18 

The interaction between axial compressive loading and external pressure 

loading has been studied in reference 19 for thin-walled cylinders and in 

reference 20 for cylinders of moderate wall thicknesses. These studies do 

not address the potential problem of transverse shear deformation. 

Transverse-shear deformation effects can be important in predicting buckling 

loads of thick-walled cylinders subjected to external pressure loadings as 

well as to axial compressive loadings. 

Laminate stacking sequence can have a significant effect on the 

buckling load of laminated cylinders. 

to determine which stacking sequences are optimal and how many plies are 

needed for the assumption of constant material properties through-the- 

thickness to be valid (e.g., refs. 21-24). In reference 21, Onoda concludes 

that "one of the optimal configurations is shown to be the lamination with 

an infinite number of infinitely thin layers arranged so that the shell 

becomes quasi-isotropic in the shell surface and quasi-homogeneous through 

the thickness." However in reference 22, Uemura and Kasuya conclude that 

the effects of property changes from layer to layer decay rapidly as the 

number of layers is increased. The number of plies needed for constant 

material properties through the thickness to be assumed is dependent upon 

Several studies have been conducted 
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the stacking sequence of the laminate. A s  few as six plies may be enough to 

assume constant material properties. Reference 23 includes a parametric 

study of stacking sequences in the family [ 9 0 , 0 ]  and concludes that the 

stacking sequences which lead to the highest buckling loads have 8 = 45 

degrees while the stacking sequence which lead to the lowest buckling loads 

have 8 - 90 degrees. Reference 24 examines shells with R/t = 50 and 

R/t = 150 and finds that the optimal stacking sequence is unaffected by R/t 

in the cases studied. However, transverse-shear deformation effects are not 

adequately taken into account in the study on which reference 24 is based 

(reference 8). Anisotropic effects are studied in references 25 and 26 for 

plate buckling and in reference 27 for shell buckling but these studies do 

not include transverse-shear deformation effects. Anisotropic effects are 

discussed in references 28 and 29 for plates and curved panels, 

respectively. 

The use of "correlation factors" or "knock-down" factors are 

recommended in reference 8 as a way of correlating experimental and 

analytical buckling loads. Reductions in buckling loads are suggested for 

isotropic sandwich cylinders subjected to axial compressive loadings to 

account for geometric imperfections which are not included in an analysis. 

These knock-down factors range from .3 (a 70 percent reduction in buckling 

load) for R/t - 1000 to .87  (a 13 percent reduction in buckling load) for 

R/t - 10. The sensitivity of axial compressive buckling loads to 

imperfections is not as significant for thick-walled cylinders as it is for 

thin-walled cylinders. 

Most experimental studies of cylinder buckling due to axial compressive 

loadings concentrate on thin-walled cylinders and the effects of geometric 

imperfections. Most such studies involve thin-walled structures which would 
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not be expected to demonstrate significant transverse-shear deformation 

effects (e.g., refs. 3 0 - 3 1 ) .  One study which experimentally examines 

cylinders of moderate wall thicknesses is presented in reference 32 .  In 

that study the failure mode for applied axial compressive load is 

catastrophic shear failure for all cylinders of radius-to-thickness ratio 

less than 100. 

cylinders subjected to axial compression with radius-to-thickness ratios as 

low as 100 are presented, but cylinder lengths are chosen to produce overall 

dimensions such that the cylinder would not be expected to demonstrate 

transverse-shear deformation effects. 

33 include the region where transverse-shear deformation effects would 

appear if they were taken into account. 

presented for very short, thick-walled cylinders to support the theory. 

In reference 3 3 ,  experimental results of buckling loads of 

The analytical results in reference 

No experimental results are 

The significance of transverse-shear deformation effects on the 

buckling load of a cylinder is dependent upon the cylinder geometry, the 

boundary conditions, the loading conditions, and, in the case of laminated 

cylinders, the stacking sequence and the degree of anisotropy. 

of cylinder geometry, stacking sequence, and degree of anisotropy are 

addressed in this report. 

is used to develop buckling equations for circular cylinders subjected to 

axial compressive and external pressure loadings. 

shearing on the buckling loads of simply supported isotropic, orthotropic 

and anisotropic laminated circular cylinders is evaluated. 

The effects 

The method of analysis described in reference 17 

The effects of transverse 
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CHAPTER I1 

ANALYSIS APPROACH 

The results presented in this report are obtained by applying the 

theory presented in reference 17. 

are calculated by formulating and solving an eigenvalue problem. 

displacement series and the potential energy method are used to develop 

equilibrium equations. 

equations and the buckling loads for cylinders subjected to axial 

compressive loadings or external pressure loadings are the eigenvalues of 

the problem. 

nonlinear terms in the strain-displacement relations is required. For the 

isotropic and orthotropic cylinders, the predicted buckling load is based on 

the assumption of one mode shape in the axial direction of the cylinder and 

one mode shape in the circurnferencial direction. 

cylinders, the predicted buckling load is based on the assumption of 

displacements in the form of a Fourier series in the axial direction. 

The buckling loads of circular cylinders 

An assumed 

The equilibrium equations are converted to buckling 

In formulating the problem, a consistent choice of linear and 

For the anisotropic 

2.1 IsotroDic and OrthotroDic Analysis 

In reference 17 the potential energy method is used to obtain equations 

for the buckling of circular cylinders using a coordinate system with axes 

(x, 0 ,  z ) ,  displacements (u, v, w), and cylinder dimensions (L, R, t) as 

shown in the sketch. 
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2.1.1 Formulation of Eigenvalue Problem 

A 

¶ ,w 

The dependence of the displacements on the z coordinate must be 

chosen to find the buckling load of a cylinder. Two series are assumed to 

represent the cylinder displacements which account for the higher-order 

effects of transverse shear- deformation. The first assumed displacement 

series is given by equations (1). 

0 a u - u + u (z/t> + u1 sin(rz/t) 

v - v + v (z/t> + v1 sin(rz/t> 

w = w + w (z/t) + Wl cos(rz/t) 

0 a 

0 a 

The series in equations (1) have three types of terms, all of which are 

functions of x and 8 .  The traditional terms from classical Kirchhoff- 

Love theory (those independent of position in the radial direction) are 

represented by superscript 0. Classical Kirchhoff-Love theory can be 

a obtained by neglecting the superscript 1 terms and the w term and by 
I 

0 0 assuming that ua - -w and that va- -w in equations (1). The 
'X 'Y 
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additional terms associated with conventional Reissner-Mindlin first-order 

transverse-shear deformation theory (those linear in z) are represented by 

superscript a. Conventional Reissner-Mindlin first-order transverse-shear 

deformation theory can be obtained by neglecting the superscript 1 and the 

a w terms. The assumed displacement series also includes trigonometric 

terms in the through-the-thickness (radial) direction, which are represented 

by the terms with superscript 1. Including additional terms (trigonometric 

in this case) in the assumed displacement series is expected to lead to more 

accurate solutions because more three-dimensional effects are permitted than 

in solutions with fewer assumed displacement terms. The second displacement 

series assumed to represent the higher-order through-the-thickness effects 

uses polynomial terms instead of trigonometric terms in z .  In this case,  a 

( ~ / t ) ~  

substituted for each cos(xz/t) in equations (1). 

2 term is substituted for each sin(m/t) and a (z/t) term is 

Differential equations and boundary conditions for predicting the 

buckling loads of circular cylinders are developed in reference 17 by using 

the potential energy method and the assumed displacement series with the 

trigonometric terms in z given in equations (1). The virtual work found 

by using the potential energy method can be represented as shown in equation 

( 2 )  * 

(ax6ex + 0 6 c  + (J 6 c  + e e  z z  6 I I -  J Vol 
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7 7 and r are the stresses and e € x’ u e ’  u z ,  xe’ xz ’ ez x’ e ’  where u 

and 7 are the strains in the cylinder. The transverse 
2’ 7x9’ 7x2’ 92 

€ 

normal strain is included in the virtual work equation for completeness even 

though its contribution is expected to be small. 

A linear prebuckling response is assumed and prebuckling boundary 

conditions are taken to be: displacements v = w - 0, normal force 
(T (z/t) dz - 0 and 
X u dz - Nx, and moments 

u sin(nz/t) dz - 0 at x - 0 and x = L. The cylinder is assumed J - t / 2  X 

t o  expand uniformly in the lateral direction. 

In reference 17 the strains in equations (2) are represented in terms 

of displacements of the form of equations (1). The resulting expression of 

the virtual work is broken up into one equation for each assumed 

displacement term, nine equations for nine unknowns, and are presented in 

equations ( 3 ) .  

),B]6~odz - 0 
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RZ A 7rz 1 
COS (-)]SU dz * 0 xe ’ e 7 

[ (CYxvx R t xz t t + -) sin (-) - 7 

1 7 
A2 A AZ ez  RZ cos (-) + - sin ( - ) I  6v dz = 0 e ’ e  u J fl:, xe ’X t f ‘82 t R t [(T + 7 ) sin (0) - 

RZ 7r AZ 1 sin (-)I 6w dz - 0 BZ’B 
7 

u - 7  + 7 xz ’x R t t CYz t + -) cos (--> + e u 

1 where 6uo, 6ua, 6u , . . . are the displacement variations. The 

equilibrium equations for the cylinder are obtained from equations ( 3 )  by 

integrating by parts. 

The differential equations of equilibrium can be converted to buckling 

equations by considering small changes in deformations that occur at 

buckling. 

equations ( 3 )  to : 

This assumption reduces the first, second and third equations of 

1 2  



x9'9 0 
7 

+ -1 6~ dz = 0 R 

9Z'B 0 
7 

+ -1 6~ dz - 0 9 [ -  - +  r 
U 

R s f S, R xz 'x 

while the other equations of equations ( 3 )  remain unchanged. 

The differential equations represented by equations ( 3 )  and ( 4 )  can be 

reduced to linear equations containing only the displacement and loading 

terms as unknowns by using the following stress-strain and strain- 

displacement relations as derived in references 17 and 3 4 .  

a w I n  R Z  - w - sin (-) 
t t e = -  Z t  

13 



a 
U x 

t 

where [C ] is the orthotropic material stiffness matrix. For orthotropic 

laminates, the number of plies in the laminate is assumed to be large enough 

that the cylinder can be assumed to be transversely isotropic. 

ij 

The dependence of the displacements on the axial and circumferencial 

coordinates can be expressed in the form: 

1 u = [uO + ua (z/t> + u 

v - [vO + va (z/t> + v 

w = [wO + wa (z/t) + w 

sin(xz/t)l cos(mrx/L) sin(n0) 

sin(?rz/t)l sin(m?rx/L> cos(n8) 

cos(nz/t>~ sin(m?rx/L) sin(n8) 

1 

1 

where the superscripted terms are constants (independent of position). The 

cylinder buckle pattern is assumed to consist of m half waves in the 

longitudinal direction and n full waves in the circumferential direction. 

The displacements used to find the critical buckling load (bifurcation 

buckling point) are shown in equations ( 7 )  

N 

u = u + ;  

Iv 
v - v + G  

14 



u u  AJ 

The displacements u, v, and w, contain u, v, and w, as defined in 

equat;ons ( 6 )  . The displacements u, v,  and w are assumed to be the 

small cf,anges in displacements which occur at buckling. These small 

displacements are assumed to be in the same form as the prebuckling 

displacements in their dependence on x, 6, and z (e. g. i contains 

- 0  -a -1 components u , u , and u ) .  Simple support buckling boundary conditions 

= 0 are assumed. uk w = WVXX - v =  

Substituting equations (5) and ( 6 )  into equations ( 3 )  and ( 4 )  and 

integrating in the radial direction gives the following linear equations: 

-0  2 
QU + /!3G0 + &io + -?lJ w1 - 0 

A 

-1 2 -1 Pio  + AGO + nw0 - <Ga + 2<v + - IC w - 0 
A 

- 0  mA -a 2 m ~  -1 -1 2 -1 +io + Icv + vGo + G~~ Lu + <nGa + G~~ - u + 2n<v + - 9  w - 0 L A 

2m ;1 B ;I - 0  
+ Gxz 7 7  + -  

A 
2 

- 0  /!3 -a IC -a - <Go + <nw + m u  + [A/12 + G /t]Ga +y w + /!3i1 + ze 

[A/r2 + 2 Gze] + < T w  2n-1 

15 



-a n - a  q 9 3 3 )  ;a + - 2 u  -1 + -  n -1 11/12 u + r v  + (m+t 2 v  = o  
A A 

2 m ~  - 0  a 2~ - a  2 -a 1 A2 -1 + (2 + Gxz(t)) u + B/. v + - 11 2 iia + ?(a + G~~ t) u 
A A 

G x z L  

2 
mA - 0  - w  - 0  1 -1 + - p  v 2 + Gxz 2L 

-<  .rr 2 v -0  + <2n wo + p / A  2 u - a  + [A/.~ + 2 ~~~1 + - n w -a +@I+ 2 
A 

-1 [A+-G A ] - + F E W  V -1 - 0  
2 

t ze 2 

nx 2 
A A A 

+ G x z i  2m - a  + e 2n -a + Gxz mA 2L ;1 + TE;l+ 2 - 0  2 -0  2 - 0  - t u  + - n v  + - q w  

2 
( 9  + A c33) 1 4 1  2 - 0  

16 



and Cll ,  C12' c22' Gxo, Gxz, and Gox are properties of the cylinder 

wall. For metallic isotropic cylinders, equations ( 7 )  are simplified such 

that Cll = C22 9 C33 = E/(1-p2), C12 = pCll , and 

= Gez - G - E/2(1+p) where E is Young's modulus and p is Gxz - Gxe 
Poisson's ratio. 

Loading terms for uniform axial compression and uniform external 

NX 
pressure are added to the first, second and third of equations (8) where 

and P are the constants which represent the magnitude of the axial load 

and the external pressure, respectively, in equations (9). 

Nx 9 u dz 
X 

P R - J u o  dz 

(9) 

Ne 

Buckling loads can be found by reducing equations (8) (with the loading 

terms added to the right hand side) to matrix form as shown in equation 

(10) - 
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f '  

- 0  
U 

- 0  
V 

- 0  
W 

-a 
U 

-a 
V 

-a 
W 

-1 
U 

-1 
V 

-1 
W 

b d  

+ 

The matrix [K] contains the coefficients of the 

shown in equations (8). The matricies [B1] and 

f l  

-0 
U 

-0 
V 

-0  
W 

-a  
U 

-a 
V 

-a 
W 

-1 

-1 

-1 

U 

V 

W 

b 4  

linear displacement terms 

[B2] contain the 

coefficients of the nonlinear displacement terms in equations ( 5 )  when 

substituted into equations ( 3 )  and (4). 

The lowest value of N or N8 which is a solution to the eigenvalue 
X 

problem in equation (10) is the critical buckling load. The values of m 

and n which give the lowest N or N8 represent the number of waves at 
X 

buckling. 

loads is to be found, a value for 

If the buckling load of a cylinder subjected to a combination of 

is chosen and substituted into 
NX 

equation (10) and the product of N [B ] times the displacement vector is x 1  

moved to the left hand side of the equation. 

then be solved for 

The eigenvalue problem can 

Ne * 
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A computer code was written to find buckling loads represented by N 
X 

and Nd in equation (10) for orthotropic (or mildly anisotropic) cylinders 

subjected to axial compressive or external pressure loadings. 

eigenvalue is calculated using a library subroutine called CSQZ which is 

described in reference 3 5 .  This subroutine uses the combination shift QZ 

algorithm. 

orthotropic cylinders subjected to axial compressive loadings is presented 

in figure 1. 

The 

A flow chart of the computer code used to find buckling loads of 

2.1.2 I m D o  rtance of ComDatibilitv and Consistency in Strains 

Several assumptions might be made for the nonlinear terms in the axial 

strain to obtain buckling equations for cylinders loaded in axial 

Compression. Three possible assumptions are shown in equations (11). 

The first assumption includes all nonlinear components of the displacements 

v and w. An expanded form of the axial strain is found by substituting 

equations (1) into the first equation in equations (ll), as shown in 

equation ( 1 2 ) .  
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1 0  a 
2 'X 'X 

+ - (w  e = UtX + w (z/t) + wl,x cos (7rz/t) ) 2  + 
X 

a 2 + v (z/t> + sin (7rz/t> ) 2 (v s x  
1 0  

'X 

When the nonlinear terms are squared as indicated, equation (12) includes 18 

nonlinear terms. After integrating in the thickness direction, all 18 terms 

may be non-zero for an unsymmetric laminate. For a symmetric laminate, only 

10 terms are non-zero as shown in the [B1] matrix in equation (13). 

[B1l = 

8 0 0 0 0 0 0 0 0' 

O a O O O O O O O  

O O b O O O O O g  

0 0 0 0 0 0 0 0 0  

O O O O c O O k O  

O O O O O d O O O  

0 0 0 0 0 0 0 0 0  

O O O O k O O e O  

O O g O O O O O f  - 

( 1 3 )  

In equation (13), a-b-1, c-d-1/12, e-f-1/2, g-2/7r, and k-2/7rL for the 

assumed trigonometric displacements in equations (l), and a-b-1, c-d=1/12, 

e-1/448, g-1/12, f-1/80, and k-1/16 for the assumed polynomial 

displacements in the thickness direction. 

Use of the second assumption in equations (11) requires that a-c=e=k=O 

in equation (13). This simplification neglects all the nonlinear v 

displacements by assuming that their contribution is small compared to the 
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contribution of the w displacements. Use of the third assumption in 

equations (11) requires that all terms in [B1] in equation (13) are equal 

to zero except' b-1. This simplification neglects all nonlinear v and w 

displacement terms except the constant term through the thickness in 

which is wo. 

w, 

The third assumption of equations (11) can be justified if the v 

a displacements are negligible compared to the w displacements and the w 

0 and w1 terms are negligible compared to w . The third assumption may 

seem to be a logical choice since it is the simplest and all neglected terms 

0 are expected to be small relative to w . 

The assumptions used for the strains and displacements must satisfy the 

compatibility conditions for three-dimensional shells. Three-dimensional 

compatibility equations are presented in reference 36 as "conditions of 

compatibility" and are given, using the previously defined coordinates, in 

equations (14) . 
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e + €  = 
z ’xx x’zz yxz xz 

The linear parts of the strains and displacements must satisfy the 

compatibility conditions. The sine and cosine waves in the displacements in 

the x and 0 directions in equations ( 6 )  are chosen to satisfy the 

compatibility conditions of reference 3 6 .  

equations (5) and ( 6 )  are substituted into equations (14), and the 

differentiation with respect to x and 8 is performed, the dependence of 

equations (14) upon x and 0 is removed and all prebuckling conditions . 

are satisfied. 

If the linear components of 

The nonlinear strains must also satisfy the compatibility conditions. 

The only strain which contains nonlinear terms is the axial strain. The 

last three conditions in equations (14) are independent of the axial strain 

so the assumption used for the axial strain will not affect them. When the 

strains defined in equations ( 5 ) ,  including the first assumption in 

equations (11) for the axial strain, are substituted into the first three 

equations of (14), these three compatibility conditions become: 
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These three conditions are satisfied since the same displacement assumptions 

are made in each term in each equation. The first assumed axial strain of 

equations (11) is valid. 

If the second assumption of equations (11) is used, the first three 

conditions in equations (14) are also satisfied. The compatibility is shown 

in equation (16) for the first compatibility condition by substituting the 

second assumption of equations (11) for the axial strain into the first 

equation of (14). 

However, when the third assumption for axial strain in equations (11) is 

substituted into the first three compatibility conditions of equations 

equations (17) result. 

I .  
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* xxz I + u, zxz + w  1 0  
UPxzz + 2 - (w ,x2)'zz ' zxy 

0 a 1 Since w without a superscript includes w , w , and w , the linear 

terms in w in equations (17) include the w and w terms. The 

nonlinear terms do not contain the w and w terms. Linear and 

nonlinear out-of-plane displacement terms are included in all three 

equations of (17), as shown by the underlined terms. These equations are 

based on two different assumptions for w in the same equation. These 

three compatibility conditions do not make consistent assumptions about the 

out-of-plane displacement. Therefore, the last assumption in equations 

(ll), namely, neglecting the nonlinear w and w1 terms in the axial 

strain but including them in the linear components, is not a valid 

assumption. 

assumptions and the invalid assumption are compared in the results section. 

a 1 

a 1 

a 

Buckling loads calculated from equations with the valid 

2 . 2  AnisotroDic Analvsis 

The formulation of the eigenvalue problem for anisotropic cylinders is 

similar to the formulation of the eigenvalue problem for orthotropic 
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cylinders. 

in the analysis of the anisotropic cylinders as in the analysis of the 

orthotropic cylinders, as shown in equations (2-5). The stress-strain 

equations are altered to include the anisotropic effects which are 

represented by the C16 and C26 terms in equations (18). 

The same equilibrium and strain-displacement equations are used 

Transverse isotropy is not assumed for the anisotropic solution so each 

integral in the radial direction must be evaluated for each ply. For some 

laminates this method of evaluation provides a more accurate buckling load 

than assuming transverse isotropy (ref. 22). The displacements used in the 

anisotropic analysis are similar to those given in equations (6), but the 

series are expanded to include the sum of several values of m while 

retaining only one value of n. Several values of m are included to 

account for displacements in the axial direction which are not  in the shape 

of a pure sine wave. Two Fourier series in the axial direction are used to 

represent the displacements in the radial direction. One series includes 

symmetric modes and one series includes antisymmetric modes. Each series is 

truncated when enough terms have been included to reach convergence. 

Similar assumptions are made for the displacement series in the axial and 

circumferencial directions. 

cylinder are given in equations (19) where a total of N terms are included 

in each displacement. 

The assumed displacements for an anisotropic 
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a N 
[U; + ui (z/t> + U: sin(nz/t>] cos(minx/L) sin(n8) i-F, 3 , 5  u -  

0 
N 

+ x . [uj  + ua (z/t) + U' sin(nz/t>l cos(m.nx/L) cos(n8) 
j-2,4,6 j j J 

0 a N 
[vi + vi (z/t> + V: sin(nz/t>l sin(miTx/L) cos(n8) i-F , 3  , 5 v -  

N 
f c [VO + va (z/t> + V' sin(nz/t>l sin(m.nx/L) sin(n8) (19) 

j-2,4,6 J J j J 

The same procedure for reducing the differential equations of 

equilibrium to linear equations used for the analysis of the orthotropic 

cylinders is used for the analysis of the anisotropic cylinders. 

boundary and prebuckling conditions assumed for the orthotropic analysis are 

assumed for the anisotropic analysis. There are nine equations and nine 

unknown displacements for each value of m for the displacements 

represented by equations (19). The matrix [KIANIso contains all the 

The same 

orthotropic terms in [K] for several axial wavelengths (mode shapes) and 

the anisotropic terms which result from the combination of wavelengths. 

Similarly, the geometric stiffness matricies of the anisotropic cylinder, 

[B1IA and [B2JA, contain all the terms found in (B1] and [B2], 

respectively, for several mode shapes instead of only one. Therefore, for 5 
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values of m, N-5 in equations (19), and the matricies [K]mIso, [B1IA, 

and [B21A have dimensions 45 by 45 .  The eigenvalue problem whose solution 

is the buckling load of an anisotropic cylinder subjected to axial compres- 

sion or external pressure loadings is shown in equation (20 ) .  

[KIANIsc 

- O \  

u1 

v1 

w1 

u1 

-0  

-0  

-a 

-a 
N W 

;I: 
-1 
"N 

-1 

\ wN/ 

I - o \  
u1 

-0  
V 1 

-0  

"1 

u1 
-a 

-a 
N W 

-1 
N 

-1 
N 

V 

W 

The number of mode shapes which needs to be included in equations (20)  

to obtain an accurate buckling load is dependent on the geometry and 

properties of the cylinder. 

would give the most accurate solution. Approximate solutions are obtained 

by using a limited number of mode shapes. The more mode shapes used, the 

Including an infinite number of mode shapes 
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more accurate is the buckling load, but as each additional mode shape is 

added, the difference between buckling loads predicted by equation (20) with 

N and with N+l mode shapes decreases until the predicted load has 

converged to the same buckling load as predicted by an infinite number of 

mode shapes. The buckling load is the minimum value of Nx or Ng which 

is a solution to equation (20) and n is the number of waves around the 

circumference. The eigenvalue is found by using the same subroutine for the 

anisotropic cylinder as for the orthotropic cylinder. The buckling load due 

to a combination of loads is found by assuming a value for Nx, moving the 

product of Nx [BIIA times the vector of displacements to the left hand 

side of the equation and solving for . Ne 

Since many mode shapes may be needed to obtain an accurate buckling 

load and buckle pattern, solving the full system of equations may not be the 

most cost-effective approach in terms of computer requirements. A reduction 

method is presented in reference 2 5  by which the size of the matricies 

[B1IA, the displacement vector and the size of the system of [KIANIso, 

equations to be solved can be reduced. 

be used to find the buckling load of the anisotropic cylinder. 

This reduced eigenvalue problem can 

2.3 Shear Correction Factors 

An alternate method of accounting for transverse-shear deformation 

effects in calculating global structural responses, such as buckling loads, 

is the use of shear correction factors. Shear correction factors are used 

in references 3, 37, and 38 to calculate buckling loads in laminated plates 
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and shells. 

compared to results of the previously described orthotropic analysis in the 

results section. 

Buckling loads based on these shear correction factors are 

2.4 Sensitivitv to AnisotroDv 

A parameter for evaluating how significant anisotropic effects are on 

the buckling load of laminated panels is developed in reference 2 5 .  

similar parameter can be determined for cylinders by using the matricies in 

equation (20) without solving the eigenvalue problem of the anisotropic 

cylinder. The development of this parameter is outlined in Appendix A and a 

comparison of its values for various cylinders is presented in the results ' 

s ec t ion. 

A 
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CHAPTER I11 

RESULTS AND DISCUSSION 

Buckling loads for isotropic and laminated cylinders subjected to axial 

compressive and/or external pressure loadings are determined from the 

higher-order transverse-shear deformation theory and compared to buckling 

loads predicted by classical and first-order transverse-shear deformation 

theories. 

initial geometric imperfections. 

The cylinders are assumed to be simply supported and without any 

3.1 Axial ComDression 

The addition of either trigonometric or polynomial terms in the 

thickness direction to the constant and linear terms of first-order 

transverse-shear deformation theory reduces cylinder buckling loads equally. 

For all the geometries of isotropic and laminated composite cylinders 

studied, the present higher-order theory based on trigonometric terms in the 

assumed displacements predicted a buckling load within one percent of the 

buckling load predicted by the present higher-order theory based on 

polynomial terms in the assumed displacements. Adding more than one term to 

the displacement series (such as sin(3rz/t) or ( ~ / t ) ~  as well as sin(nz/t) 

3 or (z/t) ) does not decrease the predicted buckling load by more than 2 

percent for isotropic or laminated cylinders of a variety of geometries. 

Only one term in each displacement direction needs to be added to the 

displacement series of first-order transverse-shear deformation theory for 

the eigenvalues to converge for either trigonometric or polynomial assumed 
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displacement terms, Since the same buckling load results from assuming 

either polynomial or trigonometric terms in the assumed displacements, the 

term "present theory" in the following text and figures refers to the 

higher-order theory described in the previous chapter using either 

trigonometric or polynomial terms in the assumed displacements. 

3.1.1 Consistency and ComDatibilitv Requirements 

Buckling loads resulting from each for the three assumptions of axial 

strain presented in equations (11) and classical and first-order transverse- 

shear deformation theories are presented in figure 2. The buckling load and 

cylinder dimensions are expressed in terms of nondimensional parameters 2, 

kx and t/L, which are a curvature parameter, a compressive load 

coefficient, and a geometric cylinder parameter, respectively, These 

parameters are discussed in more detail in the next section. The actual 

values of these parameters and the specific material properties are not 

important in comparing the effects of different assumptions for axial strain 

since the curves shown are typical of the isotropic and laminated cylinders 

studied. The three assumptions for axial strain in equations (11) are: 1) 

all nonlinear v and 'w terms are included; 2) all nonlinear v terms are 

neglected; and 3) all nonlinear v and nonconstant w terms are 

neglected. 

The first and second assumptions of axial strain are valid but the 

third is not, as discussed in the previous chapter. 

by comparing the buckling loads predicted by the present theory based on the 

three assumptions. First, when the nonlinear terms in v are neglected, 

Two points can be made 
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the same buckling load is predicted as when they are included, so the 

nonlinear terms in v apparently can be neglected. The first and second 

assumptions in equations (11) are valid and predict the same buckling loads, 

represented by the curve with short dashes in figure 2 .  Secondly, when some 

of the nonlinear w terms are neglected, as in the third assumption of 

equations (11) (the invalid assumption), the resulting buckling load is 

significantly lower than when the valid assumptions are made, represented by 

the curve with long dashes in the figure. The three solutions agree with 

the classical and first-order transverse-shear deformation theories for 

long, thin cylinders with low values of Z. However, for cylinders with 

high values of Z ,  the invalid assumption (neglecting the out-of-plane 

a 1 displacement terms, w and w , in the nonlinear parts of the strains but 

including them in the linear parts of the strains) leads to buckling loads 

which are as much as 80 percent lower than the buckling loads predicted 

using a valid assumption in the strains. Assumptions which satisfy the 

compatibility conditions must be used to obtain accurate buckling loads. 

Invalid assumptions can lead to incorrect and misleading results. 

3.1.2 Buckling of Orthotropic and Mildlv Anisotropic Cvlinders 

3.1.2.1 IsotroDic Cylinders 

Isotropic cylinders with a wide range of geometries and the properties 

6 of aluminum (E-10.5 x 10 psi and p= 1/3) are studied to determine the 

effects of transverse shear deformation on axial compressive buckling loads, 

The buckling loads predicted by three theories are shown in figure 3 in 
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2 2 2 2 
terms of nondimensional parameters k x = N x L / ( D r )  , s - D r / ( G t L )  , 

and Z - L q- (12 (1 p ))/(R t) where D is the bending stiffness and G is 

the shear stiffness of the shell wall. The nondimensional parameter Z is 

a useful parameter which represents the curvature of isotropic cylinders. 

However, numerical values of Z do not provide an intuitive "feel" for the 

geometry of the cylinder. Reference 9 includes a comparison of several 

cylinder geometries which have the same values of Z 

physical significance for low values. For isotropic 

directly proportional to L /(Rt), which can also be 2 

9 

and explains its 

cylinders, Z is 

expressed as 

(R/t) (L/R)L. 

the same value of Z if the lengths are adjusted. Three cylinders which 

have the same value of Z are cylinders with: 1) R/t-1.4, L/R-14; 2) 

R/t-11, L/R=5; and 3 )  R/t-68, L/R-2. The first of these cylinders has an 

extremely thick wall and is fairly long while the second is short but with a 

slightly thinner wall. 

very short. 

Cylinders with different radius- to- thickness ratios can have 

The third cylinder is of moderate' thickness but is 

The three theories used to predict the buckling loads shown in figure 3 

are: 1) the classical theory without transverse shear deformation; 

2) the first-order transverse-shear deformation theory of reference 14; and 

3 )  the present higher-order shear deformation theory using assumed 

trigonometric or polynomial displacements in the thickness direction. 

Results for four geometric configurations, indicated by different values of 

s, are shown in the figure. 

load for thin-walled cylinders (small values of Z). When no transverse 

shear deformation is assumed, k increases as Z increases for all values 

All theories give essentially the same buckling 

X 
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of Z (classical theory). However, results from buckling loads based on 

the theory of reference 14 ,  in which transverse shear deformation is 

included, indicate that transverse shear deformation is important even in 

isotropic cylinders and can reduce the buckling load by 50 percent or more 

for thick-walled cylinders. This reduction is indicated by k becoming 
X 

constant in figure 3 as Z increases above a certain value of Z that 

depends on s .  The dashed lines in figure 3 represent the buckling loads 

obtained from the present theory using through-the-thickness trigonometric 

or polynomial terms. For all values of s considered, the present higher- 

order theory decreases the predicted buckling load by no more than a few 

percent compared to the buckling load predicted by the first-order 

transverse-shear deformation theory of reference 14. The buckling load 

determined by the first-order transverse-shear deformation theory is 

accurate to within a few percent compared to the higher-order theory and the 

added terms in the higher-order theory are not needed for isotropic 

cylinders. 

3 . 1 . 2 . 2  Mildlv AniSOtrODiC Laminated Cvlinders 

Predicted buckling loads based on three theories are shown in figure 4 

for [f45/90Ins cylinders loaded in axial compression. The three theories 

are: 1) classical theory without transverse shear deformation; 

2 )  the first-order transverse-shear deformation theory; and 3 )  the present 

higher-order shear deformation theory using assumed trigonometric or 

polynomial displacements in the thickness direction. 

parameters 

The nondimensional 

2 and s are based on material properties of isotropic kx , 

3 4  



structures and are not directly applicable to laminated structures because 

laminated structures have different values of extensional stiffness and 

shear stiffness. in each direction. Since the properties of laminated 

cylinders are not the same in all directions, a modified set of 

nondimensional parameters must be used. For laminated cylinders, D is 

2 replaced by ,/=;, Z is replaced by L J(12 (1 - pI2 P21 ))/(R t> , 

and the thickness-to-length ratio t/L is specified instead of s ,  where 

are bending stiffnesses and p and p21 are the in-plane 12 and D22 D1l 

Poisson's ratios of the laminate. The parameter s is reduced to t/L by 

removing material properties and constants and taking the square root. 

Buckling loads for three values of t/L are presented in figure 4. The . 

three curves have the same shape, though actual values of k and Z 
X 

differ. 

The in-plane material properties of Hercules Incorporated AS4-3502 

graphite-epoxy unidirectional preimpregnated tape are assumed for the study 

(i.e., E /E 11.3, Glt/Et=.53). The transverse properties assumed for the 

study are based on references 39 and 40 and are 

1 t- 

Glz/Glt= l., Gtz/Ez = 1. 

and G /Glt = . 5 7 ,  (where 1, t, and z represent the longitudinal, 

transverse and through-the-thickness directions of a O-degree unidirectional 

laminate, respectively). Buckling loads for cylinders with a [245/90]ns 

tz 

laminate were determined for the three theories. 

assumed to be greater than 18 (more than 6 repetitions of -f45/90) so that 

the properties can be assumed to be transversely isotropic and anisotropic 

effects can be neglected. 

The number of plies is 
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For thin-walled cylinders (low values of Z) the buckling loads 

obtained from the three theories agree. For very short, thick-walled 

cylinders which.buckle into very short wavelengths (cylinders with very 

large values of 

transverse-shear deformation theory. For a limited range of Z between 

these two extremes, buckling loads are predicted by the present theory which 

are as much as 50 percent lower than those predicted by the first-order 

transverse-shear deformation theory as a result of including the additional 

terms to account for the effects of transverse shear deformation. In the 

range of Z where the theories give the same buckling load, the mode shapes 

at buckling are the same (the same pair of (m,n) give the minimum 

eigenvalue). In the range of 2 where the predicted buckling loads are not 

the same (not within a few percent), the number of waves in the axial 

direction which gives the minimum eigenvalue is not the same for the first- 

order transverse-shear deformation theory as for the present theory. 

buckling load calculations are based on the assumption that the buckling 

load occurs when the cylinder is being loaded in the elastic range. 

cases where the present theory predicts buckling loads which are 

significantly lower than predicted by the first-order theory, the strain in 

the cylinder at the predicted buckling load may be so large that the 

cylinder is no longer in the elastic range, in which case the bucking load 

predicted by either theory may be incorrect. Under those circumstances the 

cylinder may not buckle but may exhibit some other behavior. 

be noted that the buckling loads predicted by the present higher-order 

theory have not been verified by experiment or by three-dimensional 

elasticity analysis. 

Z), the present theory agrees with the first-order 

The 

In some 

It should also 
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Buckling loads of a [+_45/90Ins cylinder with t/L - .OS are shown in 
figure 5 for the first-order transverse-shear deformation and present 

theories with the number of half-waves in the axial direction at buckling 

shown at several points along the curve. The set of numbers above the 

curves are the number of half-waves at buckling predicted by the first-order 

transverse-shear deformation theory, the set below the curves are the number 

of half-waves predicted by the present theory. For Z < 400, the wave 

number increases consistently and steadily as Z increases for both 

theories. For 400 < Z < 5000, the number of half-waves along the length of 

the cylinder predicted by the two theories differ significantly. As Z 

increases in this range, the first-order transverse-shear deformation 

theory's predictions of wave number continues to rise steadily until the 

maximum buckling load is reached and the wave number becomes very large. 

Z 

buckling predicted by the present theory changes. 

As 

increases above 400, the curve changes shape when the wave number at 

The wave number remains 

almost unchanged from Z = 500 to Z = 2000, then quickly rises again until 

the two predicted curves merge when short wavelength buckling is predicted 

at Z 5000. 

3.1.2.3 OrthotroDic Laminated Cvlinders 

Axial compressive buckling loads for cylinders with unidirectional 0- 

degree and 90-degree laminates and five values of 

6 and 7, respectively. 

indicate that little reduction in buckling load below the predictions of 

first-order transverse-shear deformation theory occurs in cylinders with 

t/L are shown in figures 

The predicted buckling loads shown in these figures 
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unidirectional 0 -  and 90-degree laminates for any value of t/L. For thin- 

walled cylinders, the buckling load for cylinders with unidirectional 90-  

degree laminates is much lower than the buckling load for the cylinders with 

0-degree laminates, but for thick-walled cylinders, there is very little 

difference in buckling loads. For example, the buckling load parameter k 
X 

of a cylinder with a unidirectional 0-degree laminate, with t/L - .1 and 
Z - 1 is about 10 times that of the corresponding cylinder with a 

unidirectional 90-degree laminate; but the difference between the k for 
X 

the two laminated cylinders with 

difference in buckling loads predicted by the first-order transverse-shear 

deformation theory and by the present theory is no more than a few percent 

at any point on any of the curves. Even when a difference does occur, the 

difference occurs only in a limited range of 

figure 3 for an isotropic cylinder more than figure 4 for a 

2 - 1000 is only a few percent. This 

Z.  These figures resemble 

[+45/90]ns 

laminated cylinder. The effect of the higher-order terms on predicted 

buckling loads is negligible for unidirectional [OIns and [90Ins 

laminated cylinders. 

3.1.3 Shear Correction Factors 

3.1.3.1 IsotroDic Cvlinders 

Shear correction factors have been used instead of higher-order terms 

to account for transverse-shear deformation effects on buckling loads. 

traditional shear correction factor for isotropic materials is 5 / 6  (ref. 

41). Buckling loads predicted by the first-order transverse-shear 
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deformation theory for metallic isotropic cylinders using a shear correction 

factor of 5/6 are-presented in figure 8 .  

stiffness has 1,ittle effect on the buckling load except where the cylinder's 

buckling mode approaches and reaches short wavelength buckling. 

buckling load at short wavelength buckling is strongly dependent upon the 

value of the shear moduli in the thickness direction (ref. 14). At short 

wavelength buckling the buckling load predicted by using the shear 

correction factor is slightly lower than the load predicted by the first- 

order transverse-shear deformation theory (without a shear correction 

factor) and the present higher-order theory since shear correction factors 

decrease the shear moduli. 

The reduction in transverse shear 

The 

3.1.3.2 Laminated Cylinders 

The shear correction factor of 5/6 is only a first approximation of a 

shear correction factor which accounts for transverse shear deformation in 

the predicted buckling load of laminated cylinders. 

uses a shear correction factor which takes into account the properties of 

the laminate used, such as laminate properties and stacking sequence. A 

method for calculating such shear correction factors is described in 

references 3 and 37. 

transverse shear moduli are recommended for most laminates. 

buckling loads for [+45/90Ins laminated cylinders are presented in figure 

A better approximation 

In reference 3 reductions larger than'5/6 in the 

The predicted 

4 for the classical, first-order transverse-shear deformation, and present 

theories. These buckling loads for cylinders with geometries t/L = .05 as 

well as those predicted by the first-order transverse-shear deformation 
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theory with shear correction factors of 5 / 6  and those predicted by the 

procedure recommended in reference 3 are presented in figure 9 .  

predictions bas.ed on a shear correction factor of 5 / 6  agree with the higher- 

order theory better than the first-order transverse-shear deformation theory 

(with no shear correction factor) in the limited range of Z in which 

transverse shearing is important. 

account for the change in buckling mode shape predicted at buckling by the 

higher-order theory discussed earlier. In the region of 2 where the 

buckle pattern is short wavelength buckling, the prediction based on a shear 

correction factor of 5 / 6  is slightly lower than the buckling load predicted 

without a shear correction factor. 

The 

Using a shear correction factor does not 

For large values of Z the buckling loads predicted by using a shear 

correction factor which takes into account laminate properties are slightly 

lower than those predicted by using a factor of 5 / 6 .  The difference between 

buckling loads predicted by first-order transverse-shear deformation theory 

(without a shear correction factor) and with a shear correction factor of 

5 / 6  is larger than the difference between the loads predicted by using a 

factor of 5 / 6  and using the laminate shear correction factor. 

shear correction factor of 5 / 6 ,  the laminate shear correction factor reduces 

the predicted buckling load for the range of 

approaches and reaches short wavelength buckling. 

predicted by using the laminate shear correction factor is more accurate 

than the buckling load predicted by the first-order transverse-shear 

deformation theory in the limited range of 

demonstrates the most significant effects of transverse shearing. 

of a laminate shear correction factor with first-order transverse-shear 

deformation theory does not account for the change in mode shape predicted 

As with the 

Z where the buckling mode 

The buckling load 

2 where the higher-order theory 

The use 
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by the higher-order theory using either polynomial or trigonometric higher 

order terms. 

3.1.4 Effect of Stacking Seauence on Buckline Load 

Parametric studies of the effects of stacking sequence on the axial 

compressive buckling load for thick-walled cylinders with [+_0/90] and ns 

[+8/0/90] laminates are shown in figures 10 and 11. The buckling load ns 

parameter, kx, is shown as a function of ply orientation, 0 ,  for 8 

ranging from 0 to 90 degrees. Buckling loads predicted by the first-order 

transverse-shear deformation theory and by the present theory are shown in 

figure 10 for [f8/90Jns laminated cylinders and in figure 11 for 

[+8/0/90] laminated cylinders. Buckling loads for three cylinder ns 

geometries are presented in the figures. 

laminate because of the wide range of predicted buckling loads for the three 

geometries. The most significant effect of transverse shear deformation is 

for the geometries in which R/t is very small (i.e., 1.4) for either 

value of L/R. 

Two graphs are shown for each 

Transverse shear deformation has little effect when 8 is near 0 

degrees or near 90 degrees, however its effect is significant for 8 near 

45 degrees for both types of laminated cylinders. 

decrease in buckling load is for 0 = 45 degrees, where a reduction in 

predicted buckling load of almost 50 percent occurs. The [+45/0/90] 

The most significant 

ns 

laminated cylinder is quasi-isotropic, but the low transverse shear modulus 
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causes the buckling load to decrease as it does for the [+45/90Ins 

laminate and not as it does for the metallic isotropic laminated cylinder. 

3.1.5 Buckline of Anisotropic Cvlinders 

Anisotropy can have a significant effect on the buckling load of 

laminated cylinders. 

loading conditions so a measure of C16 and C26 alone is not adequate to 

Anisotropy interacts with boundary conditions and 

evaluate the effects of anisotropy on a class of cylinders. 

‘16 ’ 

The values of 

C26, D16 and D26 provide an indication of the significance of 

anisotropy for the given loading and boundary conditions. 

material properties are expressed in nondimensional form in figure 12 for 

several mildly anisotropic and strongly anisotropic laminates. The four 

stacking sequences to be compared are symmetrically laminated and either 

balanced or consist only of 45-degree plies, so CI6= C26 and D16= D26. 

These anisotropic 

The stacking sequences examined are [+45/0/90] [ 245/90 1 4s, [245/9oIls, 4s ’ 

and [45]2s. 

all plies within a laminate are assumed to be of equal thickness. 

two stacking sequences (those with subscript 4s) are mildly anisotropic. 

The value of D16/D22 is very small. 

Each laminate is assumed to have the same total thickness and 

The first 

The last laminate listed, [45]2s, is 

strongly anisotropic, with large values of c16/c22 and D16/D22 * Comparing 

the material properties is a good way of evaluating the relative importance 

of anisotropy in the laminates. 

anisotropic and strongly anisotropic laminates which follows, only the 

effect of the material properties and cylinder geometries are examined. 

In the study of buckling loads of mildly 

The 

42 



cylinders are assumed to be simply supported and subjected to axial 

compressive loadings. 

3.1.5.1 StronElv AniSOtrODiC Laminated Cvlinders 

A study of laminated angle-ply plates (ref. 26) shows that the 

ply orientations for which anisotropy has the most significant effect on 

buckling loads is 45 degrees and that the effect of anisotropy on buckling 

is insignificant in [k45/0/90Ins laminated plates. The buckling loads for 

[45Ins laminated cylinders with a range of geometries predicted by four 

assumptions are shown in figure 13. 

cylinders are expressed using the same nondimensional parameters as for the 

The buckling loads for anisotropic 

orthotropic and isotropic cylinders. However, since these nondimensional 

parameters do not describe fully the stiffnesses in the cylinder, they have 

less significance for anisotropic cylinders than for orthotropic cylinders. 

The four assumptions are: 1) the first-order transverse-shear deformation 

theory with anisotropic effects neglected (i.e., C16 = C26 - 0); 2)  the 

present theory with anisotropic effects neglected; 3 )  the first-order 

transverse-shear deformation theory with anisotropic effects included (i.e., 

CI6 and C26 are not equal to 0); and 4) the present theory with anisotropic 

effects included. The first and second of these assumptions are represented 

by the solid curves. 

represented by the dashed curves. 

load of laminated 

The third and fourth of these assumptions are 

The effect of anisotropy on the buckling 

[45Ins cylinders is the difference between the two solid 

curves for first-order transverse-shear deformation theory, and between the 
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two dashed curves for the present theory. The effect of transverse shear 

deformation on the buckling load of laminated [45Ins cylinders is the 

difference between the upper solid and dashed curves for the assumptions in 

which anisotropic effects are neglected and between the lower solid and 

dashed curves for the assumptions in which anisotropic effects are included. 

The effect on the buckling load of more accurately accounting for transverse 

shear deformation is much less significant than the effect of accounting for 

anisotropy. In this case, a decrease in buckling load of 26 percent for the 

cylinder with R/t = 10 

but a decrease in buckling load of only a few percent results from including 

transverse-shear deformation effects. 

results from including the effects of anisotropy 

The first-order transverse-shear deformation and present theories 

predict the buckling loads in figure 4 if anisotropic effects are neglected. 

Predicted buckling loads for which anisotropic effects are included for the 

[+45/0/90] and [?45/90] laminated cylinders are not presented in this ns ns 

report because the reduction in buckling load due to the effect of 

anisotropy is less than 1 percent of the buckling load for all geometries 

studied . 

3.1.5.2 Sensitivitv to AnisotroDic Effects 

The sensitivity parameter, p ,  as defined in Appendix A, is an 

indicator of the significance of anisotropic effects on buckling loads. 

Buckling loads of cylinders which have a large value of 

dependent on anisotropic effects. A positive value of p indicates that 

the buckling load of the cylinder is increased by including anisotropic 

I p I  are strongly 
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effects and a negative value of p 

decreased by including anisotropic effects. 

indicated on plots of buckling load as a function of 

cylinders with two stacking sequences in figure 14. 

square symbols represent the [45Ins laminated cylinders and the dashed 

indicates that the buckling load is 

The sensitivity parameter is 

Z 

The solid lines and 

for several 

line and diamond symbols represent the [f45/90] laminated cylinders. The ns 

orthotropic and anisotropic solutions for the [k45/90Ins cylinders are the 

same so only one dashed line is shown. 

Four sets of cylinder dimensions, represented by the data points, are 

presented in figure 14. The geometries were chosen to produce values of 2 

which represent each section of the curve of the k versus Z plots shown 
X 

in figures 3 and 13. The values of Z examined are approximately 1, 100, 

1000, and 10,000. The magnitudes of p at each of these points on the k 
X 

versus 2 curve for cylinders of the two stacking sequences are shown in 

figure 14. The effect of anisotropy is far more significant for all points 

examined for the [45Ins laminated cylinder than the [f45/90) laminated ns 

cylinder. 

For the cylinder with 2 = 1, the difference between the buckling 

loads predicted by including and by neglecting anisotropic effects is 9.1 

percent for the [45Ins laminated cylinder and less than .1 percent for the 

[f45/90]ns laminated cylinder. This difference corresponds to magnitudes 

of l p l  equal to .14 and .002, respectively. In this section of the kx 

versus 2 curve, the dependence on anisotropy is relatively small even for 

the [45Ins laminated cylinder. For Z = 100, including the effects of 
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anisotropy reduces the predicted buckling load by 26 percent and .003 

percent for the two types of cylinders. This difference corresponds to 

magnitudes of l p l  equal to .22  and .002, respectively. The effect of 

anisotropy on the predicted buckling load is significant for the [45Ins 

laminated cylinders for Z = 100. For Z = 1000, the difference between 

buckling loads predicted by neglecting and by including anisotropy is 55 

percent and .1 percent, respectively. For short wavelength buckling, i.e, 

Z = 10,000, the effect of anisotropy is negligible for both laminated 

cylinders. For short wavelength buckling, l p l  < .001 for the [_+45/9Ojns 

cylinders and l p l  € .00001 for the [45Ins cylinders. 

Using the method described in Appendix A ,  an approximate buckling load 

for the anisotropic cylinder can be found from equation (A.lO) and repeated 

here as equation (21) 

6 kx (1 + p )  
X 

where 1; is the approximate buc ling load of the anisotropic cy 
X inder. The 

kX 1 

nondimensional parameter 

calculated by neglecting anisotropic effects, and on the sensitivity 

parameter, p .  

is based on the buckling load parameter, 
X 

Since the calculated value of p is less than zero, the buckling 

load approximation for the anisotropic cylinder is less than the buckling 

load predicted by neglecting anisotropy. The accuracy of  equation (20) can 

be evaluated from an example based on a data point in figure 14. 
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For the laminated [45Ins cylinder with Z - 1000 , p = - .424 and 

k - 169. Using the formula in equation ( 2 0 ) ,  k - 9 8 .  This value of k 

is a very good approximation of the value of 

X X X 

k at Z =L 1000 on the solid 
X 

curve labeled anisotropic. Only the first two terms in the Taylor series 

expansion are needed to predict accurate buckling loads of the anisotropic 

cylinder. 

3 . 2  Combined Loads 

The interaction between axial compression Nx and external pressure P 

(Ne - P R) loadings for isotropic cylinders and laminated cylinders of four 
stacking sequences is shown in figures 15-19. These loadings are shown on 

applied to the ends of the cylinder and P applied to the figures as 
*X 

the entire wall of the cylinder as shown in a typical section of the 

cylinder wall. Buckling loads predicted by two transverse-shear deformation 

theories, first-order transverse-shear deformation theory and the present 

higher-order transverse-shear theory, are shown for cylinders with radius- 

to-thickness ratios of 10 and 1.4 and length-to-thickness ratios of 1 and 

1 4 . 3 ,  respectively. 

Since transverse-shear deformation effects cause little reduction in 

the axial compressive buckling loads of isotropic and unidirectional 0 -  and 

90-degree laminates, little difference in the interaction curves for these 

cylinders is expected. There is virtually no effect on the buckling load 

predicted by adding higher-order terms to account for transverse shearing 

for either geometries of isotropic cylinders subjected to axial compressive 
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and external pressure loadings. 

methods are indistinguishable for aluminum cylinders, as shown in figure 15, 

because one curves lies on top of the other. 

The buckling load results for the two 

No difference in the buckling load results is detectable for the 

unidirectional laminated cylinders of [OIns or [90Ins for R/t - 10 and 

L/R - 1, as shown in figure 16. A small reduction in buckling load can be 

seen for these two laminates for cylinders with geometries R/t - 1.4 and 
L/R - 14.3, as shown in figure 17. As in the case of axial compressive 

loadings alone, the addition of higher-order terms has a negligible effect 

on the buckling load predictions for unidirectional [0ins and [goins 

laminated cylinders. 

Buckling loads predicted by the two theories for laminated cylinders of 

[k45/90Ins and [245/0/90]ns stacking sequences for the same cylinder 

dimensions as above are shown in figures 18 and 19. Little difference in 

buckling load results can be seen in figure 18 for either laminate with 

R/t - 10. However, the laminated cylinders of R/t = 1.4 which contain 45- 

degree plies have predicted buckling loads which are significantly reduced 

by including the higher-order terms, as shown in figure 19. 
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CHAPTER IV 

CONCLUDING REMARKS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

4.1 Swnmarv 

An analytical study of the effects of transverse shear deformation and 

anisotropy on the buckling loads of orthotropic and anisotropic laminated 

cylinders subjected to axial compression and/or external pressure loads was 

conducted. The effects on buckling loads of adding higher-order terms to 

the displacement series of classical shell buckling theories were studied. 

Buckling loads predicted by classical theory, first-order transverse-shear 

deformation theory and the higher-order theory were compared to determine 

which cylinder geometries and laminate stacking sequences have a reduction 

in buckling load due to transverse shearing. 

compared to buckling loads predicted by using the first-order transverse- 

shear deformation theory with shear correction factors. A parametric study 

of buckling loads of cylinders with [&0/90] and [+0/0/90]ns laminates 

These results were also 

ns 

was conducted to determine which laminates are most sensitive to transverse- 

shear deformation effects. Anisotropic effects were studied by comparing 

buckling loads predicted by the first-order transverse-shear deformation 

theory and by the higher-order theory with anisotropic material properties 

neglected and with anisotropic material properties included. 
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4 . 2  Conclusions 

Trigonometric and polynomial terms in the thickness direction were 

added to the displacement terms used in the first-order transverse-shear 

deformation theory to obtain two forms of the higher-order theory. 

range of parameters considered, the addition of one trigonometric or one 

polynomial term in each displacement direction leads to equal reductions of 

predicted buckling loads. 

displacement direction does not lead to further reductions in the predicted 

buckling load for either polynomial or trigonometric displacement terms. 

For the 

The addition of more than one term in each 

Buckling loads predicted by the higher-order theory based on consistent 

assumed strain-displacement relations and based on inconsistent assumed 

strain-displacement relations were calculated for laminated cylinders loaded 

in axial compression. These strain-displacement relations lead to 

compatibility equations which are valid and invalid, respectively. Buckling 

load predictions based on the consistent and inconsistent assumptions for 

cylinders of moderately thick and very thick walls are significantly 

different. The buckling loads based on the inconsistent assumptions in the 

linear and nonlinear parts of the strain-displacement relations are much 

lower than the buckling loads based on the consistent assumptions. 

For isotropic cylinders and for unidirectional [O 1 ns and [goins 

laminated cylinders, little accuracy appears to be gained by adding the 

complication of trigonometric or polynomial terms in the thickness direction 

for all cylinder geometries studied. The difference between buckling loads 

predicted by the first-order transverse-shear deformation theory and by the 

higher-order theory is very small for most geometries of laminated cylinders 
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of any stacking sequence studied. However, for some short laminated 

cylinders with thick walls and ply orientations near 45 degrees, the 

addition of higher-order terms appears to cause a significant reduction in 

predicted buckling loads to values below those determined by the first-order 

transverse-shear deformation theory. There seems to be a limited range of 

cylinder geometries in which the addition of higher-order terms to account 

for transverse shearing leads to predicted buckling loads which are as much 

as 50 percent lower than the buckling loads predicted by the first-order 

transverse-shear deformation theory for [245/90Ins laminated cylinders. 

This limited range includes cylinders with dimensions such that R/t = 1.4 

and L/R -14. For the limited range of cylinder geometries between low 

values of 2 and very high values of Z, the buckling loads predicted by 

the first-order transverse-shear deformation theory are significantly higher 

than the buckling loads predicted by the higher-order theory. 

For this limited range of cylinder geometries, the use of shear 

correction factors provides a simple way of finding buckling loads which are 

between those predicted by the first-order transverse-shear deformation 

theory and those predicted by the present higher-order theory. The use of 

shear correction factors with the first-order transverse-shear deformation 

theory does not predict the same buckling load or mode shape as the higher- 

order theory but it is an improvement over the first-order transverse-shear 

deformation theory without shear correction factors. 

A parametric study of stacking sequences of the form [+C1/90],~ and 

[ke/O/90] seems to indicate that the amount of reduction in buckling load ns 

due to transverse shearing is dependent upon the stacking sequence. The 

addition of higher-order terms to the displacement series seems to have a 
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negligible effect on the predicted buckling loads for 

near 90 degrees for both types of laminates. However, for 0 near 

45 degrees, the.buckling loads predicted by the present theory can be as 

much as 50 percent below the buckling loads predicted by the first-order 

transverse-shear deformation theory. 

€3 near 0 degrees and 

The effect of anisotropy on the bucking loads of strongly anisotropic 

laminated cylinders, such as a 

important than the transverse-shearing effects for all the cylinder 

geometries examined in this study. 

significant effect on predicted buckling loads of a wide range of cylinder 

geometries. 

cylinder leads to non-conservative errors in the predicted buckling loads. 

The effect of the interaction of axial compressive and external 

[45Ins laminate, sppears to be more 

Anisotropic properties have a 

Neglecting the anisotropic effects in a strongly anisotropic 

pressure loadings on the buckling of isotropic, [OIns, [9OIns, 

[+45/90Ins, and +45/0/90] cylinders was studied. The differences 

between buckling oads predicted by the first-order theory and by the 

present theory are negligible for all geometries of isotropic cylinders 

studied when subjected to combined loads. For laminated cylinders, the 

reduction in predicted buckling loads due to including the higher-order 

terms in the assumed displacement series is only apparent for very thick- 

walled, short cylinders. In the case of combined loads, as well as with 

axial compressive loadings alone, the buckling loads of unidirectional 

['Ins 

includhg the higher-order terms. However, the predicted buckling loads of 

[+45/90Ins and [+45/0/90] laminated cylinders are significantly lower 

ns 

and [90],, laminated cylinders are not significantly reduced by 

ns 
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for the present theory than for the first-order transverse-shear deformation 

theory. 
-. 

The following conclusions can be drawn from the results of this 

investigation: 

(1) Classical theory is adequate for predicting buckling loads for all 

types of cylinders studied which have walls which are thin or moderately 

thick (low or moderate values of the curvature parameter Z) when subjected 

to axial compressive loading for all cylinder geometries and boundary 

conditions studied. 

( 2 )  The first-order transverse-shear deformation theory is adequate for 

predicting buckling loads for isotropic and unidirectional [OIns and 

[90Ins cylinders subjected to axial compression for all cylinder geometries 

and boundary conditions studied (all values of Z). The first-order 

transverse-shear deformation theory is also adequate for predicting buckling 

loads for very thick-walled (high values of Z) laminated cylinders which 

buckle into very short waves. 

( 3 )  For cylinders with moderate or high values of Z. the use of shear 

correction factors leads to buckling loads which are lower than those 

predicted by the first-order transverse-shear deformation theory but not as 

low as predicted by the higher-order theory. 

( 4 )  The addition of one trigonometric or polynomial term in the thickness 

direction in each assumed displacement series leads to the same predicted 

buckling load so neither series is superior to the other in making accurate 

predictions. 
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(5) Consistent assumptions in the linear and nonlinear terms in the 

s:rai;i-displacement relations which do not violate the compatibility 

requirements are required to obtain accurate buckling loads from the higher- 

order theory. 

( 6 )  

buckling loads due to transverse shearing for cylinders in the limited range 

of cylinder geometries between moderate values of Z 

of z. 
( 7 )  A parametric study of stacking sequences of the form [+8/90Ins and 

Higher-order terms appear to be needed to account for the reduction in 

and very high values 

[+e/O/90] seems to indicate that the laminated cylinders whose axial ns 

compressive buckling loads are most affected by transverse shearing are 

those containing 45-degree plies. 

( 8 )  The magnitude of the buckling load is more sensitive to anisotropic 

effects than to transverse-shear deformation effects for strongly 

anisotropic cylinders. 

(9) The addition of higher-order terms through the thickness reduces the 

predicted buckling loads of cylinders subjected to external pressure 

loadings by approximately the same percent as the reduction in predicted 

buckling loads of cylinders subjected to axial compressive loadings. 

4.3 Recommendations for Future Research 

This work on cylindrical shell buckling could be extended in many ways. 

Boundary conditions other than simple support could be considered. Shear 

loading alone or with axial compression and external pressure could be 

considered. Initial geometric imperfections or stiffeners could be included 
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I -  

in the cylinders. On a broader outlook, the present theory could be applied 

to other types of-shells or extended into the postbuckling load range. 

Experimental results would also be useful as a means of verifying the 

analytical results presented. 

Future research could include conducting experiments that involve 

loading thick-walled laminated graphite-epoxy cylinders in axial compression 

until buckling. Several types of materials and stacking sequences could be 

studied to compare experimental results and to determine which laminates are 

most affected by transverse shearing. A comparison could also be made to 

see if the experimental results agree with the analytical ones. 
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APPENDIX A 

DEVELOPMENT OF SENSITIVITY PARAMETER 

Parameters which z.i" be used to evaluate the sensitivity of the 

buckling load of a laminated panel to anisotropic material coefficients are 

developed in refeience 25. 

to laminated cylinders to evaluate their sensitivity to anisotropic material 

coefficients. These sensitivity parameters give a relative indication of 

how significant the effects of anisotropy are on the buckling load of 

cylinders. The higher the magnitude of the sensitivity parameter, the more 

significant the effect of anisotropy on the buckling load of the cylinder. 

The method used in reference 25 can be applied 

Sensitivity parameters for cylinders subjected to axial compressive 

loadings are calculated by starting with the eigenvalue problem presented in 

equation (20), rewritten as equation (A.l) by substituting (x) as the 

displacement vector and n as the eigenvalue of the anisotropic problem. 

In reference 2 5 ,  the matrix [K]mIso  is decomposed into two matricies, 

each with the same dimensions as the original matrix. The first of these 

two matricies, IK1ANISO [ K I o ,  contains only the orthotropic terms from 

The matrix [ K I o  is a block diagonal matrix in which each bl::.k matrix is 

associated with one value of wave number in the longitudinal direction, m i' 

The second of the two matricies, [K],, contains all the non-orthotropic 

56  



(all of the C16 and C26 terms). The matrix [K), [KIANIso terms from 

has block matricies of zero and non-zero terms. Each block matrix is 

associated with.a pair of longitudinal wave numbers, m and m . The 

matricies [KIo and [K], are shown in equations (A.2) for a problem in 

i j 

which three consecutive values of longitudinal wave number m, where 
L 

i-1,2,3 are used 

In the matrix of orthotropic terms, each diagonal block matrix is based 

on only one value of mi and corresponds to the [K] matrix in equation 

(10). In the matrix of anisotropic terms, each off-diagonal block matrix is 

based on two different values of The orthogonality of the displacement mi. 

series shown in equation (20) causes all block matricies which are dependent 

upon the combinations of m and m such that j-i or j-i+2 to be [O]. 
i j 

The orthogonality also causes block matricies which are dependent upon the 

combinations of m and m such that j-i+l t o  be non-zero block 
i j 
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matricies. The relationship between [KIo, [K],, and [K]ANIso is shown 

in equations (A.3). 

The tracing parameter X 

effects are included (1-1) or neglected (A-0). 

is a marker to indicate whether anisotropic 

When equation (A.3) is substituted into equation (A.l) and 1-0, the 

eigenvalues are the orthotropic cylinder buckling loads. 

sensitivity parameter, the orthotropic cylinder buckling loads must be 

known, and are found f r o m  equation (10) for each longitudinal wave number ( 3  

in this case), or from equation (A.4). When A-0,  0 is the eigenvalue for. 

the orthotropic problem. 

To find the 

(XI = n wllA (XI [ K1 ANI so (A.4) 

A 9 0  

The sensitivity parameter, p ,  is developed in reference 25 and defined 

in equation (A.5). 

Derivatives of I) with respect to X are evaluated by using equations 

(A.6). Details of the derivation are presented in reference 25.  
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( [Klo + n [BIT (d2x/aX2) + [KIa(dx/dX) + X [K] a (d2x/dX2) 

- a2n/aX2 [BIT (XI - an/dX [BIT (dx/dX) = - [K], (ax/dX) 

where (d2n/aX2)  is found by evaluating the second equation of (A.6) at 

X-0, and by taking into account that an/aX = (x) t [K], (x) = 0 because of 

the form of the 

There will 

The minimum n 

zero and non-zero blocks in [K],. 

be one and one d02 /8X2  for each value of m assumed. 

when X-0 is the orthotropic buckling load of the cylinder. 

i 

The p associated with that O is the anisotropic sensitivity parameter of 

the cylinder. 

result from including the anisotropic effects than from neglecting them. 

The anisotropic sensitivity parameter is evaluated to determine the 

In general, p < 0 and a lower predicted buckling load will 

importance of anisotropy to the buckling load of a cylinder. For a truly 

orthotropic cylinder, p is equal to zero. For a mildly anisotropic 

cylinder, I p I  is less than .l. For a strongly anisotropic cylinder, l p l  

is greater than .25 (as defined in reference 25). 

The anisotropic sensitivity parameter, p ,  can be used to find an 

approximation of the buckling load of the anisotropic cylinder without 

calculating the eigenvalue of the problem presented in equation ( A . 3 )  which 

includes both the anisotropic and orthotropic terms. This approximation is 

calculated from the buckling load found by neglecting anisotropy (the 

solution to equation (A.4)) and the sensitivity parameter, p .  This method 

provides a way of accounting for anisotropy but avoids solving the large 

eigenvalue problem of equation (20). 
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A Taylor series expansion as shown in equation ( A . 7 )  can be used to 

approximate the buckling load of the anisotropic cylinder. 

These x 2  a2n 

2!TW which leads to x-0 For simplification, let w = 

quantities have been found using equations ( A . 4 )  and ( A . 5 ) ,  respectively. 

By using only the first two terms in the Taylor series expansion, 

equation ( A . 8 )  results. 

Converting the buckling loads in equation ( A . 8 )  to nondimensional 

parame t e r s involving kx, the nondimensionalized buckling load 

approximation, kx, can be expressed as: 

k = kx (1 + p )  X 
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Figure 12. Anisotropic material properties of graphite-epoxy laminates. 
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